Az OLED működése, felépítése
Az OLED technológia lassan piacéretté válik. Mobiltelefonokban, digitális kamerákban már találkozhatunk kisméretű kijelzőkkel, de néhány éven belül már nagyképernyős TV-kben is működhetnek ezek a nagyszerű kis szerves fénykibocsátó diódák.
Az OLED (Organic Light-Emitting Diode) azaz szerves fénykibocsátó dióda, mint annyi más találmány a természetből származik. A szentjánosbogarak köztudomásúan világítanak, mégpedig meglepően nagy fényerővel küldenek egymásnak jeleket, ha „felvillanyozza” őket a párosodás lehetősége. Innen származik a felfedezés, hogy bizonyos szerves anyagok feszültség hatására fényt bocsátanak ki. Ez a jelenség az elektrolumineszcencia, azaz elektromos áram vagy elektromos tér hatására egy anyagban fellépő fénykibocsátás.
Az OLED esetében ez úgy működik, hogy elektromos térben az elektródákból kilépő töltéshordozók (elektronok és un. „lyukak” azaz kationok) energiaállapotukat tekintve egymás felé közelednek a szerves anyagban. Az elektromos erőtér az elektronokat az elektronszállító rétegben (Electron-Transport Layer – ETL) mindig a legalacsonyabb el nem foglalt molekuláris pályára, a lyukakat pedig a lyukszállító rétegben (Hole-Transport Layer – HTL) a legmagasabb elfoglalt molekuláris pályára készteti. A szerves anyag határfelületén az egymáshoz energia szempontjából közel kerülő két töltéshordozó „rekombinálódik”, és azok a felszabaduló energia következtében semleges, gerjesztett állapotba kerülnek (mint a felajzott szentjánosbogarak). A gerjesztett részecskeállapot az elektrolumineszcens szerves anyagban lecseng és eközben egy foton (a fény elemi egysége) keletkezik. A leírt folyamat jelentős fénymennyiséget állít elő.
Az OLED fénykibocsátó anyagát és előállítását tekintve kétféle technológia létezik. Az egyik technológia un. „kis” molekulákat (Small Molecule), a másik polimereket alkalmaz emittáló anyag gyanánt. Az OLED-et alkotó rétegeket, a kis molekulákat alkalmazó technológiánál vákuumgőzöléssel, a polimerek alkalmazása esetén a tintasugaras nyomtatáshoz hasonlóan viszik fel a hordozó üveglapra. Mindkét esetben azonos Indium-Tin Oxid (ITO) alkotja az átlátszó anódot, ezután jön a lyukelőállító és szállító réteg, majd az szerves fénykibocsátó anyag (kis molekula vagy polimer réteg), és végül az elektronelőállító és szállító réteg, rajta a fém katóddal (ez utóbbi gyakran egy réteg).
Az OLED esetében ez úgy működik, hogy elektromos térben az elektródákból kilépő töltéshordozók (elektronok és un. „lyukak” azaz kationok) energiaállapotukat tekintve egymás felé közelednek a szerves anyagban. Az elektromos erőtér az elektronokat az elektronszállító rétegben (Electron-Transport Layer – ETL) mindig a legalacsonyabb el nem foglalt molekuláris pályára, a lyukakat pedig a lyukszállító rétegben (Hole-Transport Layer – HTL) a legmagasabb elfoglalt molekuláris pályára készteti. A szerves anyag határfelületén az egymáshoz energia szempontjából közel kerülő két töltéshordozó „rekombinálódik”, és azok a felszabaduló energia következtében semleges, gerjesztett állapotba kerülnek (mint a felajzott szentjánosbogarak). A gerjesztett részecskeállapot az elektrolumineszcens szerves anyagban lecseng és eközben egy foton (a fény elemi egysége) keletkezik. A leírt folyamat jelentős fénymennyiséget állít elő.
Az OLED fénykibocsátó anyagát és előállítását tekintve kétféle technológia létezik. Az egyik technológia un. „kis” molekulákat (Small Molecule), a másik polimereket alkalmaz emittáló anyag gyanánt. Az OLED-et alkotó rétegeket, a kis molekulákat alkalmazó technológiánál vákuumgőzöléssel, a polimerek alkalmazása esetén a tintasugaras nyomtatáshoz hasonlóan viszik fel a hordozó üveglapra. Mindkét esetben azonos Indium-Tin Oxid (ITO) alkotja az átlátszó anódot, ezután jön a lyukelőállító és szállító réteg, majd az szerves fénykibocsátó anyag (kis molekula vagy polimer réteg), és végül az elektronelőállító és szállító réteg, rajta a fém katóddal (ez utóbbi gyakran egy réteg).
Oldal: 1 2